OWEA 2018 Watershed Workshop

A Technical Review of Pervious Pavement

Doug Turney, PE, CFM, LEED AP (EMH&T)

EMHAT

Structural Design – AASHTO Flexible Pavement Design

- 1. Obtain Subgrade CBR (wet/soaked) value (typically 2-7)
- 2. Calculate Traffic Load
- 3. Calculate Structural Number
- 4. Design Subbase Stone Thickness Based on Layer Coefficients
 - 0.06 No. 2 Stone
 - 0.09 No. 57 Stone
 - 0.30 for setting bed and brick

Other Structural Enhancements:

- Geoweb
- Geogrid
- Upgraded Geofabrics

Traffic Loads – Maximum 1,000,000 ESAL's

Road Class	Description	Design ESALs*	Design TI**		Sall
Arterial	Through traffic with access to high-density, regional, commercial and office developments or downtown streets. General traffic mix.	9,000,000	11.5		
Major Collector	Traffic with access to low-density, local, commercial and office development or high density, residential sub-divisions. General traffic mix.	3,000,000	10		
Minor Collector	Through traffic with access to low-density, neighborhood, commercial development or low-density, residential sub-divisions. General traffic mix.	1,000,000	9	lases	ad Rases
Bus Passenger Drop-off	Public transport centralized facility for buses to pick up passengers from other modes of transport, or for parking of city or school buses.	500,000	8.5	Jregate E	h Stahilis
Local Commercial	Commercial and limited through traffic with access to commercial premises and multi-family and single-family residential roads. Used by automobiles, service vehicles and heavy delivery trucks This category includes large parking lots at commercial retail facilities.	330,000	8	Design Range for PICP on Non-stabilized, Open-Graded Aggregate Bases	**Pritential Desirin Ranne for PICP with Stabilized Rases
Residential	No through traffic with access to multi-family and single-family residential properties. Used by automobiles, service vehicles and light delivery trucks, including limited construction traffic.	110,000	7	-stabilized, 0	al Desinn Ra
Facility Parking and Alleys	Parking areas for automobiles at large facilities with access for emergency vehicles and occasional use by service vehicles or heavy delivery trucks.	90,000	7	PICP on Non-	***Potenti
Commercial Parking	Restricted parking and drop-off areas associated with business premises, mostly used by automobiles and occasional light delivery trucks. No construction traffic over finished surfaces.	30,000	6	n Range for	
Commercial Plaza	Predominantly pedestrian traffic, but with access for occasional heavy maintenance and emergency vehicles. No construction traffic over finished surfaces.	10,000	5	Desig	

*ESAL = 18,000 lb (80 kN) equivalent single axle load

**TI = Caltrans Traffic Index TI = 9 X (ESALs/1,000,000)0.119

***Consult a pavement engineer

AASHTO Flexible Pavement Design

Columbus Residential Design Policy

Typical short one to two block long loop street with no future extensions

- 1,500 cars/day
- 5% trucks
- 30 Year Design Life
- Directional Distribution = 50%
- Design Lane Distribution Factor = 100%
- B/C Ratio Other Urban (Use 0.725)

Traffic Factors	202-1 July 2016
Traine Factors	Reference Section 202

RATIO OF B:C COMMERCIAL VEHICLES					
Europianal Observices	B:C	Ratio			
Functional Classification	Urban*	Rural*			
Interstate (01)	4:1	7:1			
Other Freeway or Expressway (02)	3:1				
Principal Arterial (03)	2:1	5:1			
All Other (04, 05, 06, 07)	1:1	2:1			

Francisco - L Olanovičanska	Ri	gid	Flexible		
Functional Classification	В	С	В	С	
Interstate (01), rural*	1.53	0.37	0.98	0.29	
Principal Arterial (03), rural*	1.67	0.44	1.06	0.33	
All Other (04, 05, 06, 07), rural*	1.26	0.76	0.79	0.48	
Interstate (01), urban*	1.46	0.46	0.93	0.34	
Expressway & Freeway (02), urban*	1.38	0.72	0.90	0.47	
All Other (03, 04, 05, 06, 07), urban*	1.64	0.53	1.04	0.41	

* The designer must determine if the location is urban or rural in character. The ODOT High may Functional Classification System Concepts, Procedures and Instructions document available from the Office of Program Management should be used as a guide.

Total ESALs: 299,962

http://www.dot.state.oh.us/Divisions/Engineering/Pavement/Pavement%20Design%20%20Rehabilitation%20Manual/PDM_Section_200.pdf

Structural Thickness Design Example

CBR = 5.0 Total Flexible ESALs = 299,962 <u>Resulting Structural No. = 2.95</u>

Material	Layer Coefficient	Thickness (in)	Total
No. 2, 3, or 4 Stone	0.06	20	1.39
No. 57 Stone	0.09	4	0.36
Pavers & Setting Bed	0.30	4.625	1.39
		Total	2.95

University California Davis Load Simulator

University California-Davis Design Tables

Number of Days in a Year When the Subbase has Standing Water (Wet Days)			5	0			9	0			12	20			
Resilient Modulus of Subgrade (MPa)	Dry	40	60	80	100	40	60	80	100	40	60	80	100		•
	Wet	24	36	48	60	24	36	48	60	24	36	48	60	Annual Numbe	
Cohesion (kPa), Internal Friction	Dry	10, 20	15, 25	20, 30	25, 35	10, 20	15, 25	20, 30	25, 35	10, 20	15, 25	20, 30	25, 35	Days with Rain	fall
Angle of Subgrade (°) ¹	Wet	6, 12	9,15	12, 22	15, 25	6, 12	9,15	12, 22	15, 25	6, 12	9, 15	12, 22	15, 25	(46 years of re	cord)
Lifetime ESALs (Traffic Index)		(All de				ickness i 50 mm A							Layer)	Greater Than	
50,000 (6.3)		175	150	150	150	210	150	150	150	230	150	150	150		
100,000 (6.8)		285	180	150	150	325	215	150	150	340	235	150	150	0.1"	71
200,000 (7.4)		395	285	185	150	430	320	215	150	450	335	235	155	0.25"	44
300,000 (7.8)		455	340	240	160	495	375	275	195	515	395	290	215	0.5″	24
400,000 (8.1)		500	380	280	200	535	415	310	235	555	435	330	250	1″	9
500,000 (8.3)		530	410	305	230	570	445	340	260	590	465	355	275	-	-
600,000 (8.5)		555	435	330	250	595	470	360	280	615	490	380	300	1.5"	3
700,000 (8.6)		580	455	350	270	620	490	380	300	640	510	400	315	2″	2
800,000 (8.8)		600	470	365	285	640	505	395	315	660	525	415	335		
900,000 (8.9)		615	485	380	295	655	525	410	330	675	540	430	345		
1,000,000 (9.0)		630	500	390	310	670	535	425	340	690	555	440	360		
¹ Default values based on testing cited in the lit	¹ Default values based on testing cited in the literature (10,12)														

Table 9.1: Design Table for PICP (Metric) (continued)

 $MPa = 17.61 \times CBR^{0.64}$ (CBR of 5 = MPa 49) 290 mm = 11.7"

Subgrade Compaction & Proof Roll GeoFabric Layers

CAUTION

Anna Anna

IGEL

 Bottom and sides of trench

Tencate Mirafi RS-380i

- Reinforcement in weak soils
- High Infiltration Rate

Fabric	Permitivity	Grab Strength	Tear/Tensile Strength
ODOT Type D	0.05 sec ⁻¹	800 N	70 lbs
Mirafi RS-380i	0.9 sec ⁻¹	1500 N	180 lbs

GeoWeb – Increases Strength

Doubles Layer Coefficient of the Stone Layer it Confines

The GEOWEB[®] Cell Dimensions

Relative Size ¹	GW20V	GV	GW40V						
Name	GW20V (small cell)	GW30V (For All Other Applications	GW40V (large cell)						
Nominal Length x Width ²	8.8 x 10.2 in (224 x 259 mm)	11.3 x 12.6 in (287x 320 mm)	10.5 x 13.0 in (267 x 330 mm)	18.7 x 20.0 in (475 x 508 mm)					
Nominal Area ³	44.8 in ² (289 cm ²)	71.3 in2 (460 cm ²)	68.3 in ² (440 cm ²)	187.0 in ² (1206 cm ²)					
Cells per yd ² (m ²)	28.9 (34.6)	18.2 (21.7)	6.9 (8.3)						
Nominal Depths	3 in (75 m	3 in (75 mm), 4 in (100 mm), 6 in (150 mm), and 8 in (200 mm) for all cells							

1 All details and dimensions are nominal and subject to manufacturing tolerances. 2 Cell length and width will vary approximately ±10% through the recommended expansion range 3 Cell area will vary only ±1% through the recommended section expansion range. 4 Cell dimensions for Earth Retention sections are fixed and NOT variable or nomina

Easton – Whole Foods

https://youtu.be/2Kbk6-47WVo

LA Abrasion Test

- The standard LA abrasion test subjects a course aggregate sample to abrasion, impact, and grinding in a rotating steel drum containing a specified number of steel spheres
- LA abrasion of 40 means 40% of the original sample passed through the No. 12 sieve (1.70 mm)

No. 2, 3, or 4 Stone

- Testing Requirements
 - LA Abrasion Test <40 as per ASTM C-131
 - Angular particles >90% (no rounded river gravel)
 - Less than 2% passing No. 200 sieve
 - CBR >80%
- Recycled Concrete Typically Can't pass the LA abrasion test

Tech South -Soft rock or contaminated material?

No. 57 Stone

hurch

4

- Testing Requirements
 - LA Abrasion <40
 - Angular particles >90% (no rounded river gravel)

OF

- Less than 2% passing No. 200 sieve
- CBR >80%

Compaction Equipment

10-12 Ton Roller

Deflectometer Testing

<u>Procedure</u>

- 1. (3) Drops to Seat plate
- 2. (3) More Drops record readings
- 3. Take average of last (3) readings

Material	Maximum Deflection
No. 2, 3, or 4 Stone	1 mm
No. 57 Stone	0.5 mm

<u>Note</u>

1. First lift of base stone may have high readings because the native subgrade will deflect and elevate the readings

2. Can only test to a depth equal to plate diameter = 12"

Light Weight Deflectometer

- Purchased by CTL
 - \$6000
- Easy to use
- Good form of QA/QC between contractor and inspector
- Most tests passed, few small areas had to be re-rolled

Poor Stone Compaction

Lift Thickness • 12" or less

No. 8 Setting Bed

Testing requirements

- LA Abrasion Test <40 as per ASTM C-131
- Angular particles >90% (no rounded river gravel)
- Less than 2% passing No. 200 sieve
- CBR >80%

Plate Compactor for Pavers

Site Stabilization
• Use Sod

£719YU

-0

• No grass seed

Concrete bands

8 2543

14-308-300

18"x6" straight curb
12"x12" flush band

Paver Material & Install Prices

Unilock Endura Color:\$4.50/SF deliveredUnilock Standard Color:\$2.60/SF deliveredPine Hall Clay:\$4.50/SF delivered

Machine Install Price: Hand Install Price:

\$3.00/SF (includes setting bed & chips) \$5.00/SF (includes setting bed & chips)

Machine Installation

Clay Paver Parking Stall Installation

Bid Item Costs – Public Bids

ltem No.	Description	Total	Unit	Low Bid		Contractor Suggested Change	New Bid Cost	
203	EXCAVATION	11,411	CY	\$ 20.00	\$228,220.00	\$5.00	\$25.00	hard to work in existing streets
605	6" PVC PIPE UNDERDRAIN PERFORATED, AS PER PLAN	2925	LF	\$15.00	\$43,875.00			
660	SODDING, UNSTAKED	1,912	SY	\$ 12.00	\$22,944.00			
SPEC	PRESTO GEOWEB GW20V (3-inch), OR EQUAL	7,888	SY	\$8.00	\$63,104.00			
SPEC	PERVIOUS CONCRETE PAVERS (T=3 1/8")	70,794	SF	\$7.50	\$530,955.00			
SPEC	AGGREGATE BASE, AS PER PLAN NO. 57 STONE (T=4")	1,033	CY	\$51.00	\$52,683.00	\$5.00	\$56.00	more work to get to grade than anticipated
SPEC	AGGREGATE BASE, AS PER PLAN (NO. 2, 3, OR 4 STONE)	9,529	CY	\$39.00	\$371,631.00			
SPEC	WOVEN GEOSYNTHETIC Mifafi RS380i or EQUIVALENT	9,801	SY	\$5.30	\$51,945.30			

Full Street Re-build Bid Prices

(70,794 SF pervious pavement)

Contractor	Bid
George Igel	\$3.6 million
Shelly & Sands	\$3.8 million
Conie Construction	\$4.1 million
Facemeyer	\$4.2 million
Estimate	\$4.6 million

Includes

20% Force Account

\$405,000 street sweeper

\$129,000 contingency items

Cost Per SF

Low bid (w/o force account, contingency, and sweeper) = \$34.60/SF

Paver Installation Contractor

- Most Knowledgeable
- Typical Responsibilities
 - No. 8 Setting Bed
 - Set Pavers
 - Sweep in Chips
 - Plate Compact Finished Pavers
 - Replace Cracked or Chipped Bricks
 - Re-joint with Aggregate as needed until end of Warranty Period

Note: They will install the other layers of aggregate

Construction Observations

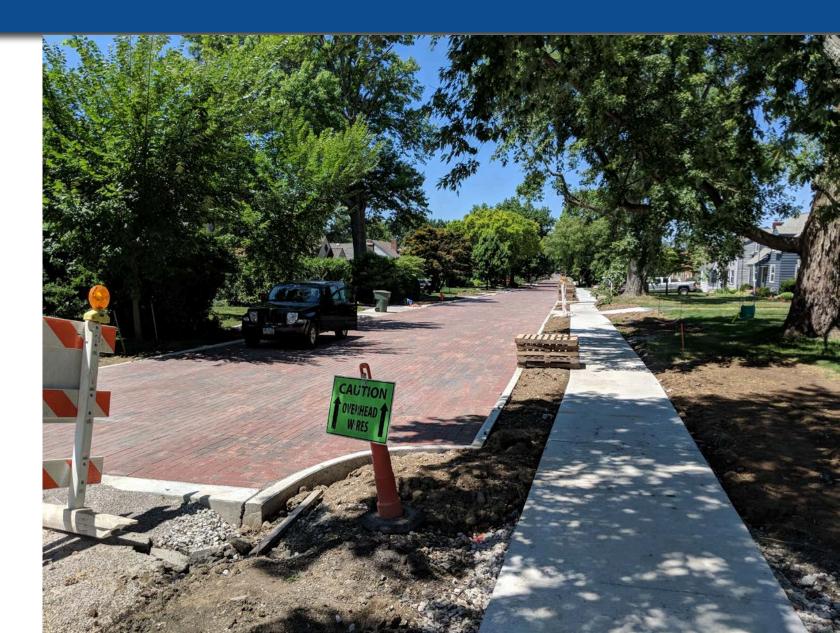
- General contractor
 - Doesn't like to roll stone
 - Doesn't like shallow lift depths
 - Doesn't like sod
 - Doesn't like multiple mobilizations for pavement planning
 - Doesn't like to use plate compactor to compact stone at manholes
 - Doesn't like phased construction
 - Tree removal
 - Curb
 - Only wants subcontractors there once
- General contractor is typically <u>least</u> knowledgeable of the bunch
- Paver Installer is most knowledgeable
- Inspectors have never seen a project like this before
 - Deflectometer helps them quantify inspection

Design Engineer

- Construction Observation Contract Recommended
- Answered a lot of Questions in Field
 - Contractor
 - Inspector
 - Residents
- Light Weight Deflectometer Training
- Attend Monthly Project Meetings

Upcoming Standards

- City of Columbus
 - Supplement Spec 1525 Permeable Pavement
 - Standard Details
 - Typical Section
 - Concrete Band Detail
 - Castings Detail
 - Laying Patterns
 - Green Infrastructure Design Manual
 - Location and Siting Guidelines



East Dominion Before

East Dominion After

QUESTIONS?