The New MDL Procedure , 40 CFR Part 136

October 11, 2018

Given By: Carol Turner NEORSD Analytical Services, QA/QC Supervisor

- 2015 Method Update Rule, 40 CFR Part 136
 - Proposed on February 19, 2015 Federal Register
 - Final Rule August 28, 2017 Federal Register
 - Effective September 27, 2017, Revision 2
 - EPA recognizes change cannot occur instantaneously
 - Labs should check and comply with requirements of control or permitting authority.

DEFINITION OF MDL

- Previous
 - Defined as the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero
- Current (Revision 2)
 - Defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results

Determination of MDL

- Determined from analysis of a sample in a given matrix containing the analyte.
 - Water
 - Soil
- Analysis specific
- Analytical Method Specific
 - Most analysis methods require an MDL Determination

No MDL Determination Required For:

- Whole Effluent Toxicity
- Presence/Absence Methods (ex. MMO-MUG)
- Microbiological Methods
 - Colony Counts (Membrane Filtration)
 - Most Probable Number (Colilert-QT)

No MDL Determination Required For:

- BOD
- pH, Conductivity
- Color and Odor
- Dissolved Oxygen
- Other analyses that cannot Incorporate Spikes

So Why the Need for a Change?

Previous MDL Procedure – Limitations

- Assumed that all instruments will perform the same and have the same responses
- Narrowed the estimation of the variability of the method.
 - Limited Sample Set 7 replicates
 - Measured over a short period of time
 - Measured only annually

Previous MDL Procedure – Limitations

- Instrument Sensitivity Increasing
 - Better precision in instruments
 - Calculated MDLs getting lower and lower
 - But can the MDL really be achieved in laboratory day to day operations?

New MDL Procedure

- Originally created by The NELAC Institute (TNI)
- EPA Proposed New Revisions, February 19, 2015
 Federal Register
- Better representation of inter-laboratory variability
- More representative of actual laboratory detection limits

New MDL Procedure

- Thought to produce a more reasonable MDL
 - Address blank contamination and false positive results.
 - Accounts for background levels and contamination
 - Reduces False positive detections
- More representative of lab detection limits
- On-going quarterly verification
 - At least two spiked samples on each instrument
 - Separate batches if possible.

***PREVIOUS MDL PROCEDURE**

- A low-level reference standard is prepared
 - 1-10 times the expected method detection limit

* 40 CFR Part 136, Appendix B, Promulgated in 1984

Example MDL Study

Method	Total Cyanide	
Date:	3/15/2016	
Expiration Date:	3/15/2017	
Instrument ID	Lachat	
Replicate	5.0 ug/L	
1.00	6.475	
2.00	6.943	
3.00	6.760	
4.00	6.884	
5.00	6.741	
6.00	7.179	
7.00	7.779	
STD Conc.	5.0	
Student T	3.143	
% Recovery	139.317	
Average	6.966	
Stdev	0.418	
%RSD	5.999	
MDL	1.313	
PQL	5.000	

***PREVIOUS MDL PROCEDURE**

- Seven (7) aliquots of standard analyzed
 - Taken through the entire analytical process
 - Using the approved SOP
 - Each applicable analysis
 - * 40 CFR Part 136, Appendix B, Promulgated in 1984

Example MDL Study

Method	Total Cyanide	
Date:	3/15/2016	
Expiration Date:	3/15/2017	
Instrument ID	Lachat	
Replicate	5.0 ug/L	
1.00	6.475	
2.00	6.943	
3.00	6.760	
4.00	6.884	
5.00	6.741	
6.00	7.179	
7.00	7.779	
STD Conc.	5.0	
Student T	3.143	
% Recovery	139.317	
Average	6.966	
Stdev	0.418	
%RSD	5.999	
MDL	1.313	
PQL	5.000	

***PREVIOUS MDL PROCEDURE**

- The standard deviation is calculated using the 7 replicate results
- The MDL is calculated
 - Product of:
 - the standard deviation
 - the student's t value for 99% confidence level with n-1 degrees of freedom (3.14) for the seven replicates.

* 40 CFR Part 136, Appendix B, Promulgated in 1984

Example MDL Study

Method	Total Cyanide	
Date:	3/15/2016	
Expiration Date:	3/15/2017	
Instrument ID	Lachat	
Replicate	5.0 ug/L	
1.00	6.475	
2.00	6.943	
3.00	6.760	
4.00	6.884	
5.00	6.741	
6.00	7.179	
7.00	7.779	
STD Conc.	5.0	
Student T	3.143	
% Recovery	139.317	
Average	6.966	
Stdev	0.418	
%RSD	5.999	
MDL	1.313	
PQL	5.000	

- New MDL Procedure -
 - Estimation of an Initial MDL
 - Determination of the Initial MDL
 - On-Going Data Collection
 - Annual MDL Verification

- New MDL Procedure
 - Preparation of Spikes
 - A low-level reference standard is prepared
 - 2-10 times the expected MDL
 - Previous MDL
 - No previous MDL information? Initial MDL will need to be estimated.

Estimation of Initial MDL

- Mean Concentration plus 3 times the standard deviation of a set of method blanks
- The concentration equivalent to 3 times the standard deviation of replicate Instrumental measurements of spiked blanks.
- The concentration value that corresponds to an instrument signal to noise ratio in the range of 3 to 5
- The region of the calibration where there is a significant change in sensitivity.

New MDL Procedure

- A minimum of seven (7) blanks
- A minimum of seven (7) spiked samples analyzed
 - Taken through the entire analytical process
 - Includes any preservation processes
 - Preparation processes.

Spike and Blanks

- Replicates analyzed across three (3) or more preparation and analytical batches
- Batches prepared and analyzed on at least three (3) separate calendar dates

Spikes and Blanks

- Multiple Instruments, if necessary
 - Minimum of two spikes and two blanks per instrument.

1 spike/blank Monday, 1 spike/blank Thursday 1 spike/blank Wednesday 2 spikes/blanks Thursday

1 sample/blank Monday 1 spike/blank Wednesday

Evaluation of Spiked Sample Results

- If spiked samples do not produce a numerical result
 - Prepare spiked samples again at a higher concentration.

Evaluation of Blank Results

- If blanks give no numerical results, the blank MDL does not apply
 - Numerical result includes both positive and negative results
 - If some but not all blanks give numerical results
 - Set the blank MDL equal to the highest blank result

New MDL Procedure

- The MDL of the spikes is calculated
 - $MDL_s = tS_s$
 - S is the standard deviation of Spikes
 - t is the student's t value for 99% confidence level with n-1 degrees of freedom (3.14) for seven replicates.
 Different if more than seven.

- The MDL of the blanks is calculated
 - MDL $_{b} = X_{avg} + tS_{b}$
 - X is the average of the results for the blanks
 - S_b is the standard deviation of Blank Results
 - t is the student's t value for 99% confidence level with n-1 degrees of freedom (3.14) for the seven replicates.

Student's Value

TABLES OF STUDENTS' t VALUES AT THE 99 PERCENT CONFIDENCE LEVEL

 Student t Value will vary according to how many replicates are used in the determination

Number of replicates	Degrees of freedom (n-1)	t ₍ n=1, 0.99)
7	6	3.143
8	7	2.998
9	8	2.896
10	9	2.821
11	10	2.764
16	15	2.602
21	20	2.528
26	25	2.485
31	30	2.457
61	60	2.390
100	100	2.326

New MDL Procedure

 Higher value between MDL_s and MDL_b is the winner and gets to be the MDL!

Analyst	Joe Analyst	
Date	4/14/2015	
Expires	4/14/2016	
strument ID		
MDL Study		
Replicate	STD CONC	Blank
Day 1	0.029	0.001
Day 1	0.030	0.005
Day 2	0.025	0.008
Day 3	0.028	0.001
Day 3	0.024	0.002
Day 4	0.021	0.006
Day 4	0.019	0.003
ncentration	0.030	
t's t for n=7	3.143	3.143
Average	0.02514	0.00371
% Recovery	83.81	
d Deviation	0.00414	0.00269
MDL	0.01301	0.0121

Lachat-1 MDL Study

On-going Collection of Data/Annual Recalculation

- Analyze at least 2 spikes and 2 blanks every quarter in separate batches. (Exception: if no samples are analyzed in the quarter, this is not required).
 - Each Instrument
 - Total of at least 7 spikes annually
 - Total of at least 7 blanks annually
- Make sure to analyze an initial MDL study
 - If method is altered in any way to changed sensitivity OR
 - Instrument is moved.

- Annual Recalculation of MDL
 - Recalculate MDL_s and MDL_b Every 13 Months
 - Use data from the quarterly spike and blank samples
 - Include Data from prior 24 months, if available
 - Use only data associated with acceptable QC

- Annual Recalculation of MDL
 - MDL is verified if it is between 0.5 to 2 times the existing MDL AND
 - Results for Less than 3 % of the method blanks analyzed were above the existing MDL
 - MDL can be updated if desired, or retained for the next year.
 - MDL Must be Updated if the above requirements are not met.

- Previous: 7 Replicates of Standard/Annually
- New: 7 replicates of a standard and 7 replicates of a blank
- Previous: All 7 replicates of Standard analyzed at the same time
- New: At least 3 batches run on at least 3 separate days. Note: Can use previous data also.

- Previous: No Blanks Analyzed
- New: At Least 7 replicates of a blank sample analyzed on at least 3 separate days. Note: Can use previous data.

- Previous: Replicates analyzed on one instrument
- New: Replicates analyzed across multiple instruments, if lab has more than one
- Previous: MDL Performed Annually
- New: Quarterly Verification; Annual Recalculation.

- Previous: Replicates analyzed on one instrument
- New: Replicates analyzed across multiple instruments, if lab has more than one
- Previous: MDL Performed Annually
- New: Quarterly spike sample data and method blank sample data collected. Annual Recalculation

New MDL Procedure – Effects

- Laboratories seeing increased MDL values
 - Mostly seems to be due to the incorporation of blank analyses into the method.
 - Analyses where the target is not usually detected in the method blanks, or at low levels – Minimal Change
 - Analyses where there are frequent detections in the method blanks - Potentially A Lot.

New MDL Procedure – Effects

- EPA Realizes This
 - Permittees will need to review permit limits
 - Ensure the most sensitive methods are used for compliance.
 - Might need to review and/or adjust regulatory limits???

References

- 40 CFR Part 136
- Definition and Procedure for the Determination of the Method Detection Limit, Revision 2, EPA Office of Water, EPA 821-R-16-006

https://www.epa.gov/sites/production/files/2016-12/documents/mdl-procedure_rev2_12-13-2016.pdf

QUESTIONS?