Applying the Water Quality Volume

Justin Reinhart, PE
Division of Surface Water

Northeast Ohio Stormwater Training Council
Cleveland, Ohio \& Richfield, Ohio
July 12, 2018
July 25, 2018

Post-Construction Storm Water Mgmt.

"So that a receiving stream's physical, chemical and biological characteristics are protected, and stream functions are maintained, post-construction practices shall provide long-term management of runoff quality and quantity."

1. Effective BMP

Table 4a Extended Detention Post-Construction Practices with Minimum Drain Times

Extended Detention Practices	Minimum Drain Time of WQv
Wet Extended Detention Basin ${ }^{1,2}$	24 hours
Constructed Extended Detention Wetland	24 hours
Dry Extended Detention Basin	48 hours
Permeable Pavement - Extended Detention	24 hours
Underground Storage - Extended Detention	24 hours
Sand $\&$ Other Media Filtration - Extended Detention 5	24 hours

Table 4b Infiltration Post-Construction Practices with Maximum Drain Times

Infiltration Practices	Maximum Drain Time of WQv
Bioretention Area/Cell 1,2	24 hours
Infiltration Basin	24 hours
Infiltration Trench ${ }^{2}$	48 hours
Permeable Pavement - Infiltration ${ }^{3}$	48 hours
Underground Storage - Infiltration ${ }^{3,4}$	48 hours

Protection Agency

2. Water Quality Volume (WQv)

$\mathrm{WQv}=\mathrm{P}_{\mathrm{wq}} \times \mathrm{Rv} \times \mathrm{A} \div 12$

WQv = water quality volume (ac-ft)
$P_{\text {wq }}=0.90$ inches
Rv = volumetric runoff coefficient
A = disturbed or contributing drainage area (acres)

Runoff Coefficient $R \mathrm{v}=0.05+0.9$ (i)

- $\mathrm{i}=$ fraction impervious (impervious area \div total area)
- Volumetric, not influenced by conditions such as intensity - Similar but not same as rational method coefficient "C"

CALCULATION SCENARIOS

- New Construction
- Previously Developed Areas (Redevelopment)
- Water Quality Flow

Example Site

Total site area:
Total disturbed area:
Planned impervious area:
2.25 acres
2.25 acres
1.35 acres

All WQv's will be shown in cubic feet

 Protection Agency

WQv Required

$\mathrm{WQv}=\mathrm{P}_{\text {wq }} \times R \mathrm{Rv} \times \mathrm{A}_{\text {disturbed }} \div 12$
 $R v=0.05+0.9(i)$

Where:
$\mathrm{i}=1.35 \mathrm{ac} \div 2.25 \mathrm{ac}=0.60(60 \%)$
$R v=0.05+0.9(0.60)=0.59$
$P_{w q}=0.90 \mathrm{in}$

WQv (required) $=0.100$ ac-ft $\quad\left(4,337 \mathrm{ft}^{3}\right)$

WQv Design

The site is required to treat $4,337 \mathrm{ft}^{3}$ with postconstruction BMPs; however each post-construction BMP must be designed to treat 100\% of the WQv for its contributing area.

The full 2.25 acre disturbance is graded toward a single post-construction BMP. In this case, the disturbed area and BMP drainage area are both 2.25 acres with Rv = 0.59:
$W Q v($ design $)=W Q v($ required $)=4,337 \mathrm{ft}^{3}$

Offsite Run-on

An additional 0.75 acres runs onto the site from beyond the disturbance, draining to the post-construction BMP.

Unless diverted, the BMP design WQv must include this contributing drainage area.

Offsite Run-on

$R v=0.05+0.9(i)$
$\mathrm{i}=1.35 \mathrm{ac} \div 3.00 \mathrm{ac}=0.45(45 \%)$
$R v=0.05+0.9(0.45)=0.455$
$W Q v=P_{\text {wq }} \times R v \times A_{\text {drained }} \div 12$
Where:
$P_{w q}=0.90$ in
Rv $=0.455$
$\mathrm{A}=3.00 \mathrm{ac}$
WQv (design) $=4,460 \mathrm{ft}^{3}$

Multiple Drainage Areas

If the disturbed area contains separate drainage areas, each must have a post construction BMP sized to its contributing drainage area.

outlet \#2 Protection Agency

Multiple Drainage Areas

Drainage Area \#1

Total area:
1.50 ac

68\%
Impervious:

$R v=0.05+0.9(0.68)=0.662$

Drainage Area \#2
Total area:
Impervious:
0.75 ac 44\%
$R v=0.05+0.9(0.44)=0.446$

Multiple Drainage Areas

Drainage Area \#1
$W Q v=0.90$ in $\times 0.662 \times 1.50 \mathrm{ac} \div 12$
WQv (design) $=3,244 \mathrm{ft}^{3}$

Drainage Area \#2
WQv $=0.90$ in $\times 0.446 \times 0.75 \mathrm{ac} \div 12$
WQv (design) $=1,093 \mathrm{ft}^{3}$

WQv $($ design $)=3,244+1,093=4,337 \mathrm{ft}^{3}$

Multiple Drainage Areas

Total area: $\quad 0.225$ ac Impervious: $\quad 27 \%$ $R v=0.05+0.9(0.27)=0.293$
$W Q v=0.9$ in $\times 0.293 \times 0.225 \div 12$ $W Q v=215 \mathrm{ft}^{3}$

Minor Drainage Areas

RRM using a grass filter strip or infiltration trench (to spec.):

Runoff Reduction Practice	Impervious Cover in Contributing Drainage Area	Pervious Cover in Contributing Drainage Area	Volume Received by Practice	
	$\left(\mathrm{ft}^{2}\right)$	$\left(\mathrm{ft}^{2}\right)$	$\left(\mathrm{ft}^{3}\right)$	
Sheetflow to Grass Filter Strip with C/D Soils	2644	7157	215	fi

Disconnection Area of Practice	Storage Volume Provided by Practice
$\left(\mathrm{ft}^{2}\right)$	$\left(\mathrm{ft}^{3}\right)$
7157	N/A

Runoff Reduction Volume	Remaining Volume
$\left(\mathrm{ft}^{3}\right)$	$\left(\mathrm{ft}^{3}\right)$
215	1

Runoff Reduction Practice	Impervious Cover in Contributing Drainage Area	Pervious Cover in Contributing Drainage Area	Volume Received by Practice
	(ft^{2})	$\left(\mathrm{ft}^{2}\right)$	$\left(\mathrm{ft}^{3}\right)$
7. Infiltration Practice			
Infiltration Practice	2644	7157	215

Storage Volume Provided by Practice	Runoff Reduction Volume	Remaining Volume
	$\left(\mathrm{ft}^{3}\right)$	$\left(\mathrm{ft}^{3}\right)$

PREVIOUSLY DEVELOPED AREAS

Options for Previously Developed Areas

1. Reduce the site Rv at least 20%, or
2. Use a post-c BMP with the WQv from CGP equation 3:

$$
W Q v=\left[\left(0.2 \times R v_{1}\right)+\left(R v_{2}-R v_{1}\right)\right] \times P_{\text {wq }} \times A_{\text {dist }}
$$

Where:
$\mathrm{Rv}_{1}=$ Pre-development runoff coefficient $\mathrm{Ri}_{2}=$ Post-development runoff coefficient

> Existing site
> impervious $=77 \%$
> $\operatorname{Rv}_{1}=0.05+0.9(0.77)=0.743$

1. Decrease Rv $\geq 20 \%$

Proposed site

Rv decreases by 20\%, no additional BMP required
impervious = 60\%
$R \mathrm{v}_{2}=0.05+0.9(0.60)=0.590$
$(0.59 \div 0.743)-100 \%=\underline{21 \%}$ decrease Protection Agency

2. BMP w/ Decreased Rv

Existing site
 impervious $=66 \%$
 $R \mathrm{v}_{1}=0.05+0.9(0.66)=0.644$

Proposed site
impervious = 60\%
$R \mathrm{v}_{2}=0.05+0.9(0.60)=0.590$
$100 \%-(0.590 \div 0.644)=8.4 \%$ decrease /hio

2. BMP w/ Decreased Rv

A post construction BMP is required for the WQv as calculated:

$$
\begin{gathered}
\mathrm{WQv}=\left[\left(\mathrm{Rv}_{1} \times 0.2\right)+\left(\mathrm{Rv}_{2}-\mathrm{Rv}_{1}\right)\right] \times \mathrm{P}_{\mathrm{wq}} \times \mathrm{A}_{\text {dist }} \\
=[(0.644 \times 0.2)+(0.590-0.644)] \times 0.9 \mathrm{in} \times 2.25 \mathrm{ac} \\
\mathrm{WQv}(\text { required })=550 \mathrm{ft}^{3}
\end{gathered}
$$

2. BMP w/ Decreased Rv

The site is required to treat $550 \mathrm{ft}^{3}$ with postconstruction BMPs; however each postconstruction BMP must be designed to treat 100\% of the WQv for its contributing area. Place the BMP such that its drainage area* is equal to or greater than:

$$
\begin{aligned}
& \mathrm{A}_{\text {drainage }}=\frac{\mathrm{WQ}_{v}}{\mathrm{P}_{\mathrm{wq}} \times \mathrm{Rv}} \times \frac{12}{43,560} \\
& \frac{550 \mathrm{ft}^{3}}{0.9^{\prime \prime} \times 0.95} \times \frac{12}{43,560}=0.18 \mathrm{ac}
\end{aligned}
$$

What if Rv will increase?

Existing site
impervious $=43 \%$
$\operatorname{Rv}_{1}=0.05+0.9(0.43)=0.437$
Proposed site
impervious $=60 \%$
$R \mathrm{v}_{2}=0.05+0.9(0.60)=0.590$
$(0.590 \div 0.437)-100 \%=35 \%$ increase

What if Rv will increase?

Using CGP Equation 3 (weighted Rv):

$$
\begin{aligned}
& \mathrm{WQv}=\left[\left(\mathrm{Rv}_{1} \times 0.2\right)+\left(\mathrm{Rv}_{2}-\mathrm{Rv}_{1}\right)\right] \times \mathrm{P}_{\mathrm{wq}} \times \mathrm{A}_{\text {dist }} \\
& =[(0.437 \times 0.2)+(0.590-0.437)] \times 0.9 \mathrm{in} \times 2.25 \mathrm{ac}
\end{aligned}
$$

WQv (required) $=1,766 \mathrm{ft}^{3}$

Rv Increases - Applied

The site is required to treat $1,766 \mathrm{ft}^{3}$ with postconstruction BMPs; however each postconstruction BMP must be designed to treat 100\% of the WQv for its contributing area. Place the BMP such that its drainage area* is equal to or greater than:

$$
\begin{aligned}
& \mathrm{A}_{\text {drainage }}=\frac{\mathrm{WQ} Q_{v}}{\mathrm{P}_{\mathrm{wq}} \times \mathrm{Rv}} \times \frac{12}{43,560} \\
& \frac{1,766 \mathrm{ft}^{3}}{0.9 \mathrm{in} \times 0.95} \times \frac{12}{43,560}=0.57 \mathrm{ac}
\end{aligned}
$$

[^0] Protection Agency

What if I mix new and old ?

1.50 acre site w/ existing impervious will be joined to a 0.75 acre undeveloped site to form a singular development.

What if I mix new and old?

Redevelopment
WQv $=\left[\left(R v_{1} \times 0.2\right)+\left(R v_{2}-R v_{1}\right)\right] \times 0.9$ in $\times 1.5 \mathrm{ac}$
Where:

$$
\begin{aligned}
& \mathrm{i}_{1}=0.97 \mathrm{ac} \div 1.50 \mathrm{ac}=0.63(64.5 \%) \\
& \operatorname{Rv}_{1}=0.05+0.9(0.60)=0.59 \\
& \mathrm{i}_{2}=1.02 \mathrm{ac} \div 1.50 \mathrm{ac}=0.66(68 \%) \\
& \operatorname{Rv}_{2}=0.05+0.9(0.60)=0.59
\end{aligned}
$$

$$
\text { WQv (required) }=771 \mathrm{ft}^{3}
$$

What if I mix new and old ?

New Development

WQv $=0.9$ in $\times R v \times 0.75$ ac $\div 12$

Where:
$\mathrm{i}=0.33 \mathrm{ac} \div 0.75 \mathrm{ac}=0.45 \quad(44 \%)$
Rv $=0.05+0.9(0.60)=0.59$
WQv (required) $=1,093 \mathrm{ft}^{3}$

What if I mix new and old ?

WQv (required) $=$ $1,093 \mathrm{ft}^{3}+771 \mathrm{ft}^{3}=1,864 \mathrm{ft}^{3}$

Water Quality Flow

Flow-through practices (hydrodynamic separators, media / cartridge filters, grass swales) that do not provide a significant detention volume must use the Water Quality Flow (WQF):

$$
\text { WQF }=C \times i \times A
$$

Where:
WQF = water quality discharge rate (cfs)
C = runoff coefficient for use with rational method for estimating peak discharge
i = rainfall intensity (in/hr)
A = drainage area (ac)

Table 3-1. Runoff Coefficients for Rational Formula. ${ }^{(14)}$	
Type of Drainage Area	Runoff Coefficient, C*
Business:	
Downtown areas	0.70-0.95
Neighborhood areas	0.50-0.70
Residential:	
Single-family areas	0.30-0.50
Multi-units, detached	0.40-0.60
Multi-units, attached	0.60-0.75
Suburban	0.25-0.40
Apartment dwelling areas	0.50-0.70
Industrial:	
Light areas	0.50-0.80
Heavy areas	0.60-0.90
Parks, cemeteries	0.10-0.25
Playgrounds	0.20-0.40
Railroad yard areas	0.20-0.40
Unimproved areas	0.10-0.30
Lawns:	
Sandy soil, flat, 2\%	0.05-0.10
Sandy soil, average, 2-7\%	0.10-0.15
Sandy soil, steep, 7\%	0.15-0.20
Heavy soil, flat, 2\%	0.13-0.17
Heavy soil, average, 2-7\%	0.18-0.22
Heavy soil, steep, 7\%	0.25-0.35
Streets:	
Asphaltic	0.70-0.95
Concrete	0.80-0.95
Brick	0.70-0.85
Drives and walks	0.75-0.85
Roofs	0.75-0.95
*Higher values are usually appropriate for steeply sloped areas and longer return periods because infiltration and other losses have a proportionally smaller effect on runoff in these cases.	

WQF $=\mathbf{C} \times \mathrm{i} \times \mathrm{A}$

C - the runoff coefficient for use with rational method for estimating peak discharge.
14. American Society of Civil Engineers, 1960. Desian Manual for Storm Drainage, New York, NY.

Residential:	
Single-family areas	$0.30-0.50$
Multi-units, detached	$0.40-0.60$
Multi-units, attached	$0.60-0.75$
Suburban	$0.25-0.40$
Apartment dwelling areas	$0.50-0.70$

If not provided in MS4 drainage manual.

Water Quality Flow

Rainfall intensity (i) is determined from an intensity-duration-frequency curve for an event.

- The intensity should be selected for a duration equal to the time of concentration (tc) of the drainage area.
- I-D curve for Water Quality Event is provided in tabular format in Appendix C of the CGP.
- Tc should utilize a velocity based equation for each flow condition encountered (sheet, shallow concentrated, pipe, open channel, etc.)
- If the total Tc is <5 minutes, a 5 minute duration should be used ${ }^{1}$
- Sub areas may yield larger peak discharges than then entire area and should be evaluated separately.?

Time of Concentration $\left(\mathrm{t}_{\mathrm{c}}\right)$

WQF for the entire drainage area:

50^{\prime} overland grass
26.7 min

60' overland pavement 300 ' pipe flow 410^{\prime} total
2.0 min
1.3 min
$\mathrm{Tc}=30$ minutes
 Protection Agency

Water Quality Flow

WQF for the entire drainage area:

$$
\text { WQF }=C \times i \times A
$$

Where:
$\mathrm{C}=0.85$ (commercial area)
$\mathrm{i}=1.01 \mathrm{in} / \mathrm{hr}$
$\mathrm{A}=2.25 \mathrm{ac}$
WQF $=0.85 \times 1.01 \mathrm{in} / \mathrm{hr} \times 2.25 \mathrm{ac}$ WQF $=1.93 \mathrm{cfs}$

Time of Concentration $\left(\mathrm{t}_{\mathrm{c}}\right)$

WQF for the impervious sub-area:

$0^{\prime} \quad$ overland grass	0.0 min
50^{\prime} overland pavement	1.8 min
420' pipe flow	$\mathbf{1 . 8 \mathrm { min }}$
470^{\prime} total	$\mathrm{Tc}=3.6$ minutes

Water Quality Flow

WQF for the impervious sub-area:

$$
\text { WQF }=C \times i \times A
$$

Where:
$\mathrm{C}=0.90$ (impervious, flat)
$\mathrm{i}=2.37 \mathrm{in} / \mathrm{hr}$
$\mathrm{A}=1.35 \mathrm{ac}$
WQF $=0.90 \times 2.37 \mathrm{in} / \mathrm{hr} \times 1.35 \mathrm{ac}$
WQF $=2.88 \mathrm{cfs}$

Water Quality Flow - Redevelopment

From our previous redevelopment example:
The site is required to treat $1,766 \mathrm{ft}^{3}$ with postconstruction BMPs; however each postconstruction BMP must be designed to treat 100\% of the WQv for its contributing area. Place the BMP such that its drainage area* is equal to or greater than:

$$
\begin{aligned}
& \mathrm{A}_{\text {drainage }}=\frac{\mathrm{WQ}_{\mathrm{v}}}{\mathrm{P}_{\mathrm{wq}} \times \mathrm{Rv}} \times \frac{12}{43,560} \\
& \frac{1,766 \mathrm{ft}^{3}}{0.9 \mathrm{in} \times 0.95} \times \frac{12}{43,560}=0.57 \mathrm{ac}
\end{aligned}
$$

[^1]

Water Quality Flow - Redevelopment

$$
\text { WQF }=C \times i \times A
$$

Where:
$C=0.90$
$\mathrm{i}=2.37 \mathrm{in} / \mathrm{hr}[\mathrm{tc}=3.3 \mathrm{~min}$.]
$\mathrm{A}=0.57 \mathrm{ac}$
$\mathrm{WQF}=0.90 \times 2.37 \mathrm{in} / \mathrm{hr} \times 0.57 \mathrm{ac}$
$W Q F=1.22 \mathrm{cfs}$

Storm Water Technical Assistance

 justin.reinhart@epa.ohio.gov
614-705-1149

[^0]: * Should be highest expected pollutant load area

[^1]: * Should be highest expected pollutant load area

