Applying the Water Quality Volume

Justin Reinhart, PE Division of Surface Water

Northeast Ohio Stormwater Training CouncilCleveland, Ohio& Richfield, OhioJuly 12, 2018July 25, 2018

Post-Construction Storm Water Mgmt.

"So that a receiving stream's physical, chemical and biological characteristics are protected, and stream functions are maintained, post-construction practices shall provide long-term management of runoff quality and quantity."

General Permit Authorization for Storm Water Discharges Associated with Construction Activity Under The NPDES. OEPA Permit #OHC00005, Effective 4/23/2018

1. Effective BMP

Table 4a Extended Detention Post-Construction Practices with Minimum Drain Times				
Extended Detention Practices	Minimum Drain Time of WQv			
Wet Extended Detention Basin ^{1,2}	24 hours			
Constructed Extended Detention Wetland ^{1,2}	24 hours			
Dry Extended Detention Basin ^{1,3}	48 hours			
Permeable Pavement – Extended Detention ¹	24 hours			
Underground Storage – Extended Detention ^{1,4}	24 hours			
Sand & Other Media Filtration - Extended Detention ^{1,}	24 hours			
5				

Infiltration Practices	Maximum Drain Time of WQv
Bioretention Area/Cell ^{1,2}	24 hours
Infiltration Basin	24 hours
Infiltration Trench ²	48 hours
Permeable Pavement – Infiltration ³	48 hours
Underground Storage – Infiltration ^{3,4}	48 hours

2. Water Quality Volume (WQv) $WQv = P_{wq} \times Rv \times A \div 12$

WQv = water quality volume (ac-ft)

- $P_{wq} = 0.90$ inches
- Rv = volumetric runoff coefficient
- A = disturbed <u>or</u> contributing drainage area (acres)

Runoff Coefficient Rv = 0.05 + 0.9(i)

• i = fraction impervious (impervious area ÷ total area)

Volumetric, not influenced by conditions such as intensity

 Similar but not same as rational method coefficient "C"

CALCULATION SCENARIOS

- New Construction
- Previously Developed Areas (Redevelopment)
- Water Quality Flow

Example Site

Total site area:2.25 acresTotal disturbed area:2.25 acresPlanned impervious area:1.35 acres

All WQv's will be shown in cubic feet

NEW DEVELOPMENT

Arrow o

PROLinx

Rullse

PROL

WQv Required

 $WQv = P_{wq} \times Rv \times A_{disturbed} \div 12$ Rv = 0.05 + 0.9(i)

Where:

i = 1.35 ac \div 2.25 ac = 0.60 (60%) Rv = 0.05 + 0.9(0.60) = 0.59 P_{wq} = 0.90 in A = 2.25 ac

WQv (required) = $0.100 \text{ ac-ft} (4,337 \text{ ft}^3)$

WQv Design

The site is required to treat 4,337 ft³ with postconstruction BMPs; however each post-construction BMP must be designed to treat 100% of the WQv for its contributing area.

The full 2.25 acre disturbance is graded toward a single post-construction BMP. In this case, the disturbed area and BMP drainage area are both 2.25 acres with Rv = 0.59:

WQv (design) = WQv (required) = $4,337 \text{ ft}^3$

Offsite Run-on

An additional 0.75 acres runs onto the site from beyond the disturbance, draining to the post-construction BMP.

Unless diverted, the BMP design WQv must include this contributing drainage area.

Offsite Run-on

Rv = 0.05 + 0.9(i)

i = $1.35 \text{ ac} \div 3.00 \text{ ac} = 0.45$ (45%) Rv = 0.05 + 0.9(0.45) = 0.455

$$WQv = P_{wq} \times Rv \times A_{drained} \div 12$$

Where:

 $P_{wq} = 0.90 \text{ in}$

$$Rv = 0.455$$

A = 3.00 ac

WQv (design) = $4,460 \text{ ft}^3$

If the disturbed area contains separate drainage areas, each must have a post construction BMP sized to its contributing drainage area. outlet #1 BMP drainage divide BMP outlet #2

Drainage Area #1

Total area:1.50 acImpervious:68%Rv = 0.05 + 0.9(0.68) = 0.662

Drainage Area #2	
Total area:	0.75 ac
Impervious:	44%
Rv = 0.05 + 0.9(0.44) =	0.446

outlet #1

Protection Agency

Drainage Area #1 WQv = 0.90 in x 0.662 x 1.50 ac \div 12 WQv (design) = 3,244 ft³

<u>Drainage Area #2</u> WQv = 0.90 in x 0.446 x 0.75 ac \div 12 WQv (design) = 1,093 ft³

WQv (design) = $3,244 + 1,093 = 4,337 \text{ ft}^3$

outlet #1

outlet #2

Total area:	0.225 ad
Impervious:	27%
Rv = 0.05 + 0.9(0.27) =	0.293

 $WQv = 0.9 \text{ in } \times 0.293 \times 0.225 \div 12$ $WQv = 215 \text{ ft}^3$

Minor Drainage Areas

7. Infiltration Practice

Infiltration Practice

RRM using a grass filter strip or infiltration trench (to spec.):

Runoff Reduction Practice	Impervious Cover in Contributing Drainage Area	Pervious Cover in Contributing Drainage Area	Volume Received by Practice		Disconnection Area of Practice		Reduction Volume	Remaining Volume
	(ft²)	(ft ²)	(ft³)	R	(ft ²)	(ft ³)	(ft³)	(ft ³)
Sheetflow to Grass Filter Strip with C/D Soils	2644	7157	215	fi	7157	N/A	215	1
			1	Ť				
Runoff Reduction Practice	Impervious Cover in Contributing Drainage Area	Pervious Cover in Contributing Drainage Area	Volume Received by Practice			orage Volume Provided by Practice	Runoff Reduction Volume	Remaining Volume

	Impervious Cover	Pervious Cover in	Volume		Storage Vo
	in Contributing	Contributing	Received by		Provide
Practice	Drainage Area	Drainage Area	Practice	2	Practi
	(ft ²)	(ft ²)	(ft ³)		(ft ³)
	2644	7157	215		1560
	·			-	

7	h	io
		nmental Agency

(ft³)

0

(ft³)

215

0

PREVIOUSLY DEVELOPED AREAS

Options for Previously Developed Areas

1. Reduce the site Rv at least 20%, or

2. Use a post-c BMP with the WQv from CGP equation 3:

 $WQv = [(0.2 \times Rv_1) + (Rv_2 - Rv_1)] \times P_{wq} \times A_{dist}$ Where: $Rv_1 = Pre-development runoff coefficient$ $Rv_2 = Post-development runoff coefficient$

Protection Agency

1. Decrease Rv \ge 20\% <u>Existing site</u> impervious = 77% $Rv_1 = 0.05 + 0.9(0.77) = 0.743$

> Rv decreases by 20%, no additional BMP required

Proposed site

impervious = 60% $Rv_2 = 0.05 + 0.9(0.60) = 0.590$

 $(0.59 \div 0.743) - 100\% = 21\%$ decrease

2. BMP w/ Decreased Rv

Existing site

impervious = 66% $Rv_1 = 0.05 + 0.9(0.66) = 0.644$

<u>Proposed site</u> impervious = 60% $Rv_2 = 0.05 + 0.9(0.60) = 0.590$

 $100\% - (0.590 \div 0.644) = 8.4\%$ decrease

2. BMP w/ Decreased Rv

A post construction BMP is required for the WQv as calculated:

 $WQv = [(Rv_1 \times 0.2) + (Rv_2 - Rv_1)] \times P_{wq} \times A_{dist}$

 $= [(0.644 \times 0.2) + (0.590 - 0.644)] \times 0.9 \text{ in } \times 2.25 \text{ ac}$

WQv (required) = 550 ft^3

2. BMP w/ Decreased Rv

The site is required to treat 550 ft³ with postconstruction BMPs; however each postconstruction BMP must be designed to treat 100% of the WQv for its contributing area. Place the BMP such that its drainage area* is equal to or greater than:

* Should be highest expected pollutant load area

What if Rv will increase ?

Existing site

impervious = 43% $Rv_1 = 0.05 + 0.9(0.43) = 0.437$

<u>Proposed site</u> impervious = 60% $Rv_2 = 0.05 + 0.9(0.60) = 0.590$

 $(0.590 \div 0.437) - 100\% = 35\%$ increase

What if Rv will increase ?

Using CGP Equation 3 (weighted Rv): $WQv = [(Rv_1 \times 0.2) + (Rv_2 - Rv_1)] \times P_{wq} \times A_{dist}$ $= [(0.437 \times 0.2) + (0.590 - 0.437)] \times 0.9 \text{ in } \times 2.25 \text{ ac}$

WQv (required) = $1,766 \text{ ft}^3$

Rv Increases - Applied

The site is required to treat 1,766 ft³ with postconstruction BMPs; however each postconstruction BMP must be designed to treat 100% of the WQv for its contributing area. Place the BMP such that its drainage area* is equal to or greater than:

$$A_{\text{drainage}} = \frac{WQ_{v}}{P_{wq} \times Rv} \times \frac{12}{43,560}$$
$$\frac{1,766 \text{ ft}^{3}}{0.9 \text{ in } \times 0.95} \times \frac{12}{43,560} = 0.57 \text{ ac}$$

* Should be highest expected pollutant load area

1.50 acre site w/ existingimpervious will be joined to a0.75 acre undeveloped site toform a singular development.

Redevelopment $WQv = [(Rv_1 \times 0.2) + (Rv_2 - Rv_1)] \times 0.9 \text{ in } \times 1.5 \text{ ac}$ Where: $i_1 = 0.97 \text{ ac} \div 1.50 \text{ ac} = 0.63 (64.5\%)$ $Rv_1 = 0.05 + 0.9(0.60) = 0.59$

> $i_2 = 1.02 \text{ ac} \div 1.50 \text{ ac} = 0.66 (68\%)$ $Rv_2 = 0.05 + 0.9(0.60) = 0.59$ $WQv \text{ (required)} = 771 \text{ ft}^3$

New Development $WQv = 0.9 \text{ in } \times \text{Rv} \times 0.75 \text{ ac} \div 12$ Where: $i = 0.33 \text{ ac} \div 0.75 \text{ ac} = 0.45$ (44%) Rv = 0.05 + 0.9(0.60) = 0.59

WQv (required) = $1,093 \text{ ft}^3$

WQv (required) = $1,093 \text{ ft}^3 + 771 \text{ ft}^3 = 1,864 \text{ ft}^3$

WATER QUALITY FLOW

Water Quality Flow

Flow-through practices (hydrodynamic separators, media / cartridge filters, grass swales) that do not provide a significant detention volume must use the Water Quality Flow (WQF):

$WQF = C \times i \times A$

Where:

i

- WQF = water quality discharge rate (cfs)
- C = runoff coefficient for use with rational method for estimating peak discharge
 - = rainfall intensity (in/hr)
- A = drainage area (ac)

Type of Drainage Area	Runoff Coefficient, C*
Business:	-
Downtown areas	0.70 - 0.95
Neighborhood areas	0.50 - 0.70
Residential:	
Single-family areas	0.30 - 0.50
Multi-units, detached	0.40 - 0.60
Multi-units, attached	0.60 - 0.75
Suburban	0.25 - 0.40
Apartment dwelling areas	0.50 - 0.70
Industrial:	
Light areas	0.50 - 0.80
Heavy areas	0.60 - 0.90
Parks, cemeteries	0.10 - 0.25
Playgrounds	0.20 - 0.40
Railroad yard areas	0.20 - 0.40
Unimproved areas	0.10 - 0.30
Lawns:	
Sandy soil, flat, 2%	0.05 - 0.10
Sandy soil, average, 2 - 7%	0.10 - 0.15
Sandy soil, steep, 7%	0.15 - 0.20
Heavy soil, flat, 2%	0.13 - 0.17
Heavy soil, average, 2 - 7%	0.18 - 0.22
Heavy soil, steep, 7%	0.25 - 0.35
Streets:	
Asphaltic	0.70 - 0.95
Concrete	0.80 - 0.95
Brick	0.70 - 0.85
Drives and walks	0.75 - 0.85
Roofs	0.75 - 0.95
*Higher values are usually appropriate	for steeply sloped areas and
longer return periods because infiltrat proportionally smaller effect on runoff	

$WQF = C \times i \times A$

- C the runoff coefficient for use with rational method for estimating peak discharge.
- 14. American Society of Civil Engineers, 1960. <u>Design Manual for Storm Drainage</u>, New York, NY.

Residential:	
Single-family areas	0.30 - 0.50
Multi-units, detached	0.40 - 0.60
Multi-units, attached	0.60 - 0.75
Suburban	0.25 - 0.40
Apartment dwelling areas	0.50 - 0.70

If not provided in MS4 drainage manual.

Water Quality Flow

Rainfall intensity (i) is determined from an intensity-duration-frequency curve for an event.

- The intensity should be selected for a duration equal to the time of concentration (tc) of the drainage area.
- I-D curve for Water Quality Event is provided in tabular format in Appendix C of the CGP.
- Tc should utilize a velocity based equation for each flow condition encountered (sheet, shallow concentrated, pipe, open channel, etc.)
- If the total Tc is <5 minutes, a 5 minute duration should be used¹
- Sub areas may yield larger peak discharges than then entire area and should be evaluated separately.²

Time of Concentration (t_c)

WQF for the entire drainage area:

50'	overland grass	26.7 min
60'	overland pavement	2.0 min
<u>300'</u>	pipe flow	<u> </u>
410'	total	Tc = 30 minutes

	DURATION t _c (minutes)	WATER QUALITY INTENSITY [iwq] (inches/hour)	
	5	2.37	\square
	28	1.05	
N.	29	1.03	
	30	1.01	
	31	0.99	
	32	0.97	ΙĪ
			' '

Water Quality Flow

WQF for the entire drainage area:

 $WQF = C \times i \times A$

Where: C = 0.85 (commercial area) i = 1.01 in/hr A = 2.25 ac

WQF = 0.85 × 1.01 in/hr × 2.25 ac WQF = 1.93 cfs

Time of Concentration (t_c)

WQF for the impervious sub-area:

0' overland grass
50' overland pavement
420' pipe flow
470' total

0.0 min 1.8 min <u>1.8 min</u> Tc = 3.6 minutes

DURATION t _c (minutes)	WATER QUALITY INTENSITY [iwq] (inches/hour)
5	2.37
6	2.26
7	2.15
8	2.04
9	1.94
10	1.85
11	1.76
12	1.68
13	1.62
14	1.56
15	1.51
46	1.46

Water Quality Flow

WQF for the impervious sub-area:

 $WQF = C \times i \times A$

Where: C = 0.90 (impervious, flat) i = 2.37 in/hr A = 1.35 ac

WQF = 0.90 × 2.37 in/hr × 1.35 ac WQF = 2.88 cfs

Water Quality Flow - Redevelopment

From our previous redevelopment example:

The site is required to treat 1,766 ft³ with postconstruction BMPs; however each postconstruction BMP must be designed to treat 100% of the WQv for its contributing area. Place the BMP such that its drainage area* is equal to or greater than:

 $A_{\text{drainage}} = \frac{WQ_v}{P_{wq} \times Rv} \times \frac{12}{43,560}$ $\frac{1,766 \text{ ft}^3}{0.9 \text{ in} \times 0.95} \times \frac{12}{43,560} = 0.57 \text{ ac}$

* Should be highest expected pollutant load area

Water Quality Flow - Redevelopment

 $WQF = C \times i \times A$

Where:

C = 0.90

i = 2.37 in/hr [tc = 3.3 min.] A = 0.57 ac

WQF = 0.90 × 2.37 in/hr × 0.57 ac WQF = 1.22 cfs

Storm Water Technical Assistance

justin.reinhart@epa.ohio.gov

614-705-1149

