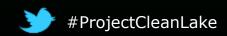
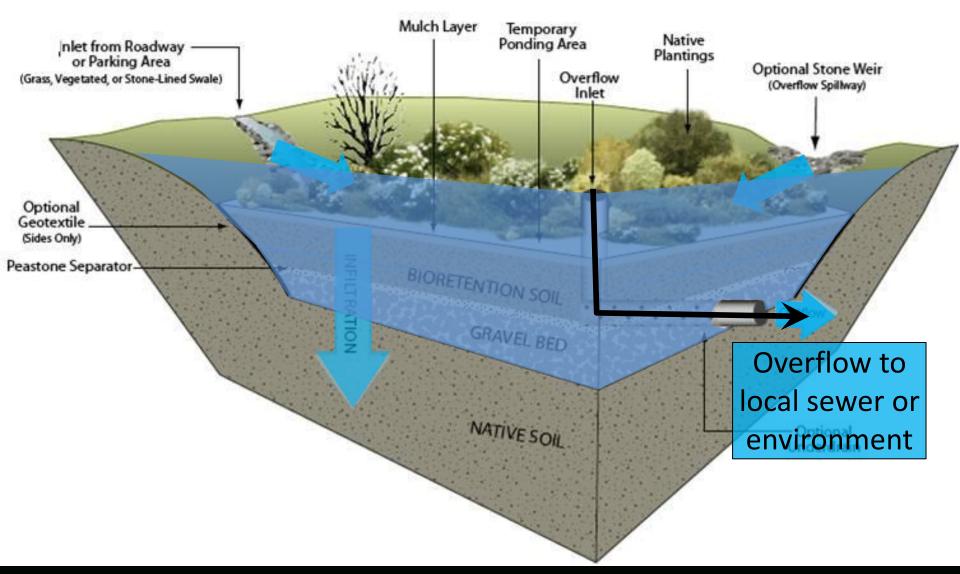
Bioretention

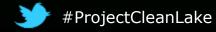
Matt Scharver Northeast Ohio Regional Sewer District

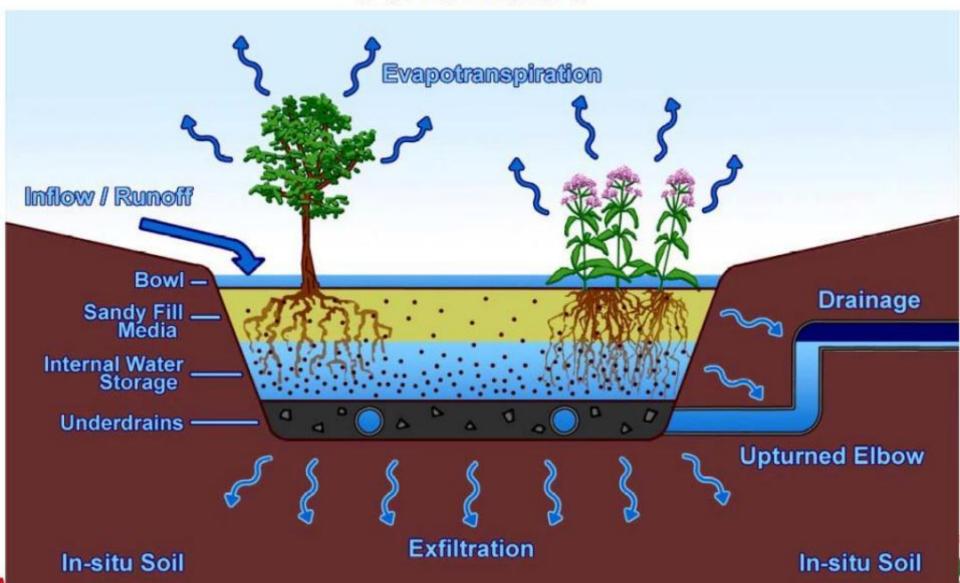
Stormwater Management Training for MS4 Municipal Employees

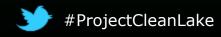
- Training Session Agenda
 - Pre-Training Survey
 - Presentation & Site Visit
 - Post-Training Survey
- Today's Selected SCM: Bioretention
 - Design features
 - Construction pitfalls
 - Operation & Maintenance activities




Stormwater Control Measure Bioretention/Bioswale




Bioretention Concept



Internal Water Zone Bioretention Cell Schematic

Bioretention/Rain Garden DesignKey Design Considerations/Features

- Hydrology
- Inlets and Outlets
- Materials
- Vegetation

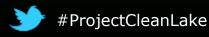
- Uses soil media, mulch, and vegetation to reduce runoff and treat stormwater
- Treatment occurs through:
 - Sediment settling
 - Microbial breakdown
 - Nutrient uptake by plants
 - Infiltration
 - Detention

Bioretention/Rain GardenDesign Basics

- Designed to treat the Water Quality Volume
 - Water Quality Volume = runoff from the first ¾ inch of rainfall
 - Drain down in a day's time
 - May be constructed online or offline

Bioretenion/Rain GardenInlets

Distributes runoff into bioretention via:



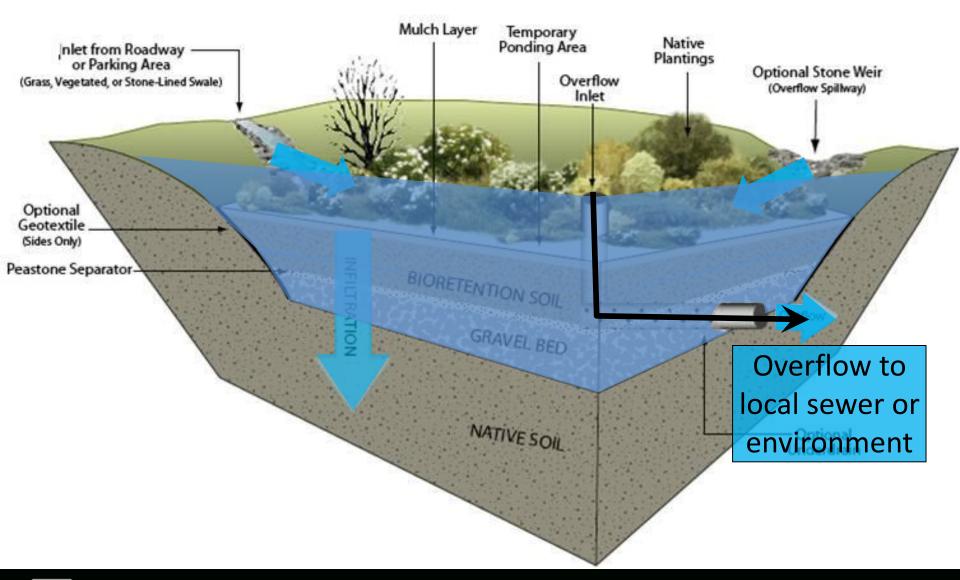
Bioretention/Rain GardenPre-Treatment

Reduce sediment loads

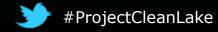
- Hydrodynamic separators
- Grass inlets
- Forebays

Bioretention/Rain GardenTreatment System

Clean Out


BioretentionPonding Depths

Should be 12 inches between the top of the bed and the top of the overflow



Bioretention Concept

- Double shredded hardwood
- 3" layer
- Keeps weeds down

Bioretention/Rain Garden Soil Media

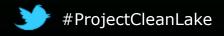
- Loamy Sand 2-4 feet
- By Volume
 - 75% Sand (AASHTO M-6 OR ASTM C-33)
 - 15% fines (Native soil)
 - 10% Organic Matter (Compost)
- pH 5.2-8.0
- Phosphorus 15-60 mg/kg

BioretentionFilter Layer

- Prevents the planting soil from moving into the stone
- 3 inches of sand over 3 inches of pea gravel #78
- NO FILTER FABRIC

BioretentionGravel Layer/Underdrains

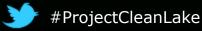
- May or may not be designed with underdrains
- 10-12 inch gravel bed of #57 washed stone
- Should be 3 inches of gravel above and below underdrain tile


Bioretention/Rain GardenVegetation

- Tolerate temporary inundation
- Natives or cultivars depending on look and function
- Can include trees and shrubs
- Best to plant in deliberate patterns and plants of the same type together to better identify weeds from intended plantings

Construction

- Pre-Construction Meeting
- Timing
- Excavation
- Structural Components
- Planting
- Mulching


Bioretention/Rain GardenConstruction - Timing

Constructed <u>AFTER</u> the upstream drainage area is stabilized

- Avoid sealing offthe native soils
- Avoid finescontaminationof the bio-soil mix



Bioretention/Rain GardenConstruction - Timing

- Ideally construct during dry weather
- Do not leave open for extended periods of time

Construction - Excavation

Properly sized equipment

- Work from the sides
- Avoid bottom compaction
- Excavate in steps

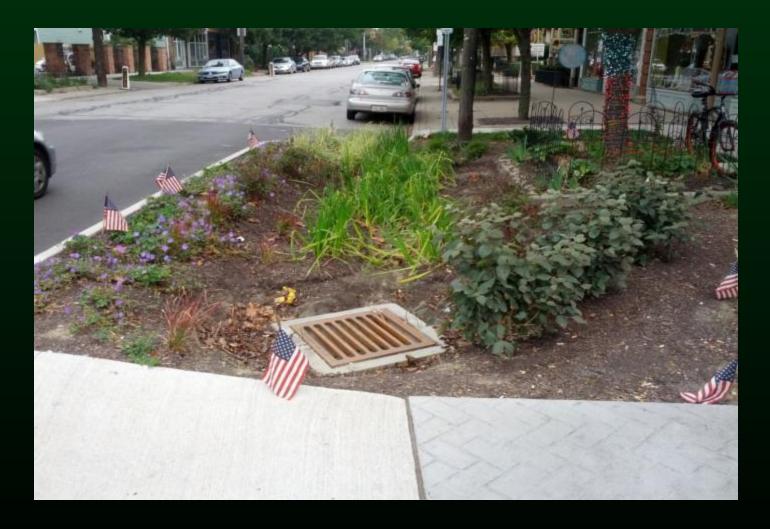
Construction - Excavation


- Sides of cell vertical
- Bottom of cells level
- Use bucket teeth to scarify sides and bottom of cell

Construction - Excavation

- Erosion and Sediment control critical
- Keep practice "off-line" for as long as possible
- Stabilize side-slopes ASAP
- Protect bio-soils with sheeting or geotextile

Bioretention/Rain GardenStructural Components


Inlet/outlet elevations critical to function

- Water needs to get into the practice
- Water needs to pond in the practice –
 Outlets will be elevated
- Underdrain may be elevated to encourage infiltration
- Cleanouts should be provided

What's wrong in the photo?

Key points...

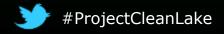
- "Reading the practice"
- Interpreting flow paths
- Listing of major maintenance components

Key points...


- Shredded vs. pine bark mulch
- Routine vs. non-routine maintenance
- Vegetation maintenance

Key points...


- Standing water, vegetation health, sediment & erosion
- Note sediment accumulations
- Note smaller orifice & outfall sizes
- Note shape of bioswale... problem?
- Note underdrain & inlet configuration



Final tips...

- Refer to individual SCM project O&M Manual
- Obtain copies of As-Built Plans
- Maintain accurate map of feature's designed & constructed drainage area

Field Site: place site image here

